
  

STO-MP-MSG-107 3 - 1 

 

 

Modelling CGFs for Tactical Air-to-Air Combat Training Motivation-

Based behaviour and Machine Learning in a Common Architecture  

Jan Joris Roessingh, Ph.D., Robbert-Jan Merk, M.Sc., Remco Meiland, M.Sc., Pieter 

Huibers, M.Sc., Carolynne Montijn, Ph.D.  
National Aerospace Laboratory (NLR), Amsterdam 

THE NETHERLANDS 

 

Maj. Roel Rijken, M.Sc. 
Royal Netherlands Air Force 

THE NETHERLANDS 

 

Capt. Tsu Kong Lue, M.Sc. 
United States Air Force - Air Force Research Laboratory 

USA 

smartbandits@nlr.nl 

ABSTRACT 

The Smart Bandits project in the Netherlands aims at developing Computer Generated Forces (CGF) 

exhibiting realistic tactical behaviour so as to increase the value of simulation training for fighter pilots. 

Although the focus lies on demonstrating adversarial behaviour in air-to-air missions, the results are more 

widely applicable in the simulation domain. 

CGF behaviour is traditionally governed by scripts that prescribe pre-determined actions upon a specific set 

of events. There are certain shortcomings attached to the use of scripts, for instance, the high complexity of 

scripts when considering full mission scenarios and the rigid and unrealistic behaviour that scripted CGFs 

tend to exhibit. To overcome these shortcomings, more sophisticated human behaviour models, combined 

with state-of-the-art Artificial Intelligence (AI) techniques are required. The Smart Bandits project explores 

the possibilities of applying these AI techniques. 

This paper explains the principal architecture that bridges the gap between theoretical behaviour models 

and their practical implementation in CGFs for fighter training purposes. The training environment in which 

the CGF are tested consists of four networked F-16 fighter aircraft simulators. This setup is capable for 

providing experimental training to pilots for combat against enemy fighter formations (in the form of 

intelligent CGFs). The architecture is generic in the sense that it can cater for various human behaviour 

models, differing conceptually from each other in their use of AI techniques, the internal representation of 

their cognition, and their learning capabilities. Behaviour models based on cognitive theory (e.g. on theories 

of situational awareness, theory of mind, intuition and surprise) and behavioural models based on machine 

learning techniques are actually embedded into this architecture.  
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1.0 INTRODUCTION 

Tactical training of fighter pilots in simulators is already widely used. An essential feature of the training of 

tactics is the presence of participants, other than the trainees. These participants may be team mates, e.g. 

other fighters in the formation, supporting forces, e.g. forward air controllers, neutral forces, e.g. civilians, or 

enemy forces, such as adversary fighters. In simulations, the roles of these participants can be performed by 

humans, Semi-Automated Forces (SAFs) or CGFs. SAFs have some functionality to perform role-related 

tasks, such that multiple virtual entities can be controlled by one human. However, the use of human experts 

to participate in tactical simulations may neither be cost-effective, nor operationally effective. First, these 

human participants are expensive assets. Second, as the simulation is not meant to provide training to them, 

they could be used somewhere else. Therefore, it is more effective to perform these roles by CGFs, insofar 

these CGFs are capable of performing these roles in an adequate manner.  

However, the current state-of-the-art of CGFs is in many cases inadequate for tactical training purposes, 

because of their behavioural simplicity. Apart from aforementioned SAFs, four categories of CGF-behaviour 

can be distinguished (Roessingh, Merk & Montijn, 2011): 

1) Non-responsive behaviour, in which the CGF behaves according to a pre-determined action 

sequence, with minimal capability to observe or react to the environment; Such a CGF is, for 

example, able to follow a route defined by waypoints. 

2) Stimulus-Response (S-R) behaviour, in which the CGF, in response to a certain set of stimuli or 

inputs from the environment, always exhibits a consistent behaviour; Such a CGF is, for example, 

able to intercept an aircraft when the aircraft position can be observed continuously. 

3) Delayed Response (DR) behaviour, in which the CGF not only takes into account a current set of 

stimuli from the environment, but also stimuli from previous moments, which are stored in the 

CGF’s memory. Such a CGF is, by means of remembering previous positions, able to intercept an 

aircraft, even though this aircraft is not continuously observable.  

4) motivation-based behaviour, which CGF combines S-R and DR behaviour but additionally takes 

into account its motivational states. These motivational states are the result of internal processes and 

may represent goals, assumptions, expectations, biological and emotive states. Such a CGF could, 

for example, make the assumption that a targeted aircraft is running low on fuel and that it will 

return to base. As a consequence, the CGF may decide to abort the interception. Alternatively, the 

CGF may anticipate the route change of the aircraft and decide to intercept the aircraft at a more 

favourable position. 

A characteristic of the CGF that so far is not included in the discussion is learning behaviour or adaptive 

behaviour (in the sense of Russell and Norvig, 2003). CGFs that exhibit behaviour that is either S-R, DR or 

motivation-based, may be extended with the capability to adapt this behaviour on the basis of Machine 

Learning (ML). ML-techniques enable the development of CGFs that are better tailored to the expertise of 

the trainee. Also, ML-techniques prevent the painstaking development of a set of rules (for example ‘if-then 

rules’)  that need to be derived for each specific problem or situation to be resolved, based on the manual 

elicitation of operational expertise that is largely implicit and not simply explicated in terms of logical rules.  

The goal of this paper is to illustrate the development of intelligent CGFs within the Smart Bandits project 

(2010-2013). This project seeks to implant humanlike intelligence into the CGFs that appear in simulated 

mission scenarios. With the project Smart Bandits, the Dutch National Aerospace Laboratory (NLR) and the 

Royal Netherlands Air Force (RNLAF) are aiming to take a significant step forward in the area of simulated 

tactical fighter pilot training. The central message of this paper is that cognitive modelling is a powerful 
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means to create motivation-based behaviour in CGFs. However to mitigate drawbacks of cognitive 

modelling, we advocate the additional use of ML techniques. These techniques are essential to reduce 

knowledge elicitation efforts for the development of agents acting in complex domains. It is demonstrated 

how different approaches can be combined into hybrid models. 

2.0 MODELLING MOTIVATION-BASED BEHAVIOUR 

2.1 Smart Bandits models 

One approach to generate intelligent behaviour is cognitive modelling. In this approach, computational 

models are designed to simulate human cognition. Within the Smart Bandits project, three cognitive models 

have been designed so far: a naturalistic decision making model, a surprise generation model and a situation 

awareness model. All three models have been evaluated using abstracted scenarios from the air combat 

domain. 

2.1.1 Naturalistic Decision Making 

As decision making is a crucial part in generating any intelligent behaviour, a naturalistic decision making 

model was developed early in the project. The model is inspired by Damasio’s Somatic Marker Hypothesis. 

The Somatic Marker Hypothesis provides a theory on decision making which dedicates a central role to 

experienced emotions as an intuitive part of decision making while integrating this intuitive part with rational 

reasoning to form a two-stage decision making process. A description of this model is given in 

Hoogendoorn, Merk & Treur (2009). 

2.1.2 Surprise generation 

Surprise is considered a universally experienced human cognitive reaction to unexpected situations with 

recognisable impact on behaviour. However, there is little attention to the phenomenon of surprise in CGF 

research and few CGFs have human-like mechanisms for generating surprise intensity and surprised 

behaviour. This leads to impoverished and unrealistic behaviour of CGFs in situations where humans would 

react surprised. For air combat this forms a problem as the element of surprise is considered an important 

factor in military operations by many military experts. 

For this reason, a model for generating surprise intensity and its impact on the behaviour has been developed 

(Merk, 2010). The model is based on various theories and empirical results from cognitive research on 

human surprise behaviour. Besides the unexpectedness of a situation, other cognitive factors such as the 

novelty of the situations are factored in. 

2.1.3 Situation awareness 

An important factor for effective decision making is Situation Awareness (SA). SA is especially important in 

work domains where the information flow can be quite high and poor decisions may lead to serious 

consequences. For this reason we designed a model based on Endsley’s (1995) three levels of SA: (1) the 

perception of cues, (2) the comprehension and integration of information and (3) the projection of 

information into future events.  
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The basic SA model (see figure 1) used for intelligent CGFs in Smart Bandits (see Hoogendoorn, van 

Lambalgen & Treur, 2011) consists of five components: (1) observations, (2/3) belief formation of current 

situation, (4) belief formation of future situation and (5) the mental model. The beliefs on current situations 

and future situations are activated (receive an activation value) through a threshold function, a technique 

adopted from the neurological domain. The SA model in figure 1 represents the knowledge of the domain 

that is used to form the beliefs. Humans use dedicated mental models which represent the relationships 

between various observations and the formation of beliefs about the environment, which, in turn, direct the 

further observations to be performed.   

Figure 1: Cognitive model for situation awareness: overview 

Another important aspect is the degradation of SA that may arise in demanding circumstances. When time is 

limited, perception and the integration of cues is impaired leading to incomplete knowledge of the 

environment. In addition, humans will not always be able to make all necessary observations due to 

limitations in working memory. Depending on the amount of time available, knowledge on the situation can 

be further refined by considering less active beliefs. These characteristics are reflected in the behaviour of 

the intelligent CGFs. A detailed description of the above model can be found in Hoogendoorn, Lambalgen 

and Treur (2011). 

3.0 MACHINE LEARNING  

3.1 Reinforcement Learning 

A common distinction in machine learning techniques is between supervised and unsupervised learning (e.g.  

Russel and Norvig, 2003). In supervised learning, after each trial, the agent is presented with the responses 

that should match the input presentation (also called input example) on which he was supposed to act. The 

difference between the actual response and the desired response is used to train the agent, just as a trainer or 

supervisor would make a student aware of the desired response. For example, the agent could learn to fly a 

manoeuvre by being presented with the correct responses. In unsupervised learning, the agent is merely 

presented with input examples. The agent has to find hidden structures in the presented examples. Since the 

examples given to the agent are not accompanied by the responses, there is no difference signal to train the 

agent. The agent could e.g. learn to distinguish between friendly and enemy tactics. 
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Reinforcement learning has elements of both aforementioned learning techniques. Rather than being 

presented with the correct response after each trial, the agent receives feedback from the environment during 

the execution of each trial. Although the feedback may not necessarily represent the correct response for 

each individual action, the learning technique aims at providing aggregated feedback for the complete trial 

and therewith reinforcing the correct responses on average. However, this does not guarantee convergence to 

the correct response.  Technical implementation of reinforcement learning is explained in Sutton & Barto 

(1998). 

Reinforcement learning is particularly suited for agent application in simulated environments, because in 

such environment the agent is able to explore the environment such that a large number of successful and 

less successful responses can be evaluated. Also, in complex environments, the desired responses, e.g. the 

best possible opponent engagement tactic, is often unknown. Reinforcement learning provides a technique to 

improve responses with each trial, therewith discovering better tactics. 

A common problem with reinforcement learning is that it requires a large amount of memory to store 

intermediate calculated values (responses combined with states of the agent in its environment, e.g. its 

position, speed and heading). In a realistic tactical environment this practically translates to an infinite 

amount of response-state combinations (‘state-action-space’). In the Smart Bandits project, air-to-air 

engagements were simulated between two friendly aircraft and two enemy aircraft, the latter two represented 

by learning agents. In these engagements, the learning agents could only respond in four ways (left, right, 

forward and shoot). In this example, we stored the state-action-space in a table, which after an acceptable 

number of learning trials took in the order of 2 gigabytes of memory. Such memory-demand scales-up 

exponentially with additional parameters. The outrageous memory demands can be diminished by 

approximating the state-action-space, rather than keeping all the exact values.  One way of approximating a 

large state-action space is by using Neural Networks (NNs), as will be explained in the next section. 

3.2 Reinforcement Learning & Neural Networks  

In a general sense, a NN (Haykin, 1998) can be considered as a network that can model any mathematical 

function. In this case, we use NNs to approximate the aforementioned state-action-space. The input for the 

NN is the current state of the agent in its environment. The output of the NN is a value for each possible 

action of the agent. The output of the NN is optimized on the basis of the data that is generated by the RL 

algorithm. The data of the RL algorithm does no longer need to be stored.  In fact, the NN is trained using 

the data that becomes available from the RL algorithm. Where previously we needed 2 gigabytes of memory 

for resolving a relatively simple air-to-air problem, we now only require approximately 10 kilobytes of data 

to store the NN knowledge for this problem. This knowledge is represented by the weight-values of the NN. 

Also, the memory demand does no longer scale up exponentially with complexity of the problem, but only 

linearly. For this purpose, relatively simple NNs, of the feed-forward type, can be used, rather than recurrent 

NNs.  However, we identified two reasons to develop alternative ML techniques for the type of agents that 

are needed to act in complex tactical scenarios: 

1) Unlike domains, such as resolving problems in games like chess, where the optimal next action is 

completely determined by the current state of the world, the resolution of tactical problems is 

characterised by the need to use previous world states. For example, an air-to-air opponent may 

disappear for some time and may pop-up at a different position, which must be taken into account by 

the agent. In other words, tactical problems are characterized by imperfect or incomplete knowledge 

of the environment1. RL techniques are known for not being overly robust for these types of 

problems and we have indeed experienced divergence from the correct response of our agents when 

confronted with more complex problems. 

                                                      
1
 In more formal terms, the solutions to these problems do not possess the so called Markov Property: the next state s' depends 

on the current state s and the decision maker's action a. But given s and a, it is conditionally independent of all previous states 

and actions. 
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2) Some realistic tactical problems require memory of the previous states to be taken into account in 

current decisions. Because of this, RL-based agents are not well suited for realistic tactical problems. 

For applications in which Delayed Response behaviour or Motivation Based behaviour is required 

(see chapter 1), RL may not be the preferred technique. 

For more advanced problems in the air-to-air domain, evolutionary techniques are investigated as an 

alternative to RL in the next section. 

3.3 Evolutionary Techniques & Neural Networks 

Artificial autonomous systems are expected to survive and operate in dynamic, complex environments. The 

specific abilities of an agent, necessary to perform in such an environment, are hard to predict a priori, let 

alone to specify in detail. Artificial evolution of autonomous systems enables agents to optimize their 

behaviour in complex, dynamic environments, without the use of detailed prior knowledge of domain 

experts. Where RL-techniques assume solutions to the problem to possess the Markov Property (see 

footnote, earlier), evolutionary techniques (Bäck, Fogel, Michalewicz, 1997) are not bound by this constraint 

and are applicable to a larger set of problems. 

Evolutionary techniques use an iterative process to search the fitness landscape in a population of solutions, 

in this case the solutions to a tactical problem. More successful instances in the populations are selected in a 

guided2 random search using parallel processing to achieve the desired solution. Such processes are often 

inspired by biological mechanisms of evolution, such as mutation and cross-over. Many experiments in 

evolutionary techniques use neural networks to control the agent. Neural networks offer a smooth search 

space, are robust to noise, provide generalisation and allow scalability (see Nolfi and Floreano, 2000). 

Furthermore, network architectures can be evolved or optimised to allow Delayed Responsive behaviour. 

These characteristics, combined with an evolutionary method to optimise the network, provide an interesting 

research area for complex, dynamic domains. As an example one could update the weights of the connection 

strengths of the SA model (see section 2.3) using an evolutionary technique in Smart Bandits. 

Since cognitive models like the SA model usually have a large set of interrelated parameters, the 

determination of their (initial) value, using Subject Matter Experts, is cumbersome, speculative and labour 

intensive. This creates the need to use evolutionary learning techniques for the appropriate weights for the 

connections between the aforementioned observations, simple beliefs, complex beliefs and future beliefs. A 

simplified example of a network representation of the SA model mentioned in section 2.3 is given in figure 2 

(taken from Hoogendoorn, van Lambalgen & Treur, 2011).  

                                                      
2
 in the sense of evaluation of a solution by a fitness function. 
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Figure 2: Example model  for situation awareness (Hoogendoorn, van Lambalgen & Treur, 2011) 

 

In order to learn the connection weights of the network in figure 2, two different approaches have been 

utilised (Gini, Hoogendoorn & van Lambalgen, 2011), namely a genetic algorithm application and a 

dedicated approach based upon the importance of the weights. The latter approach is called the ‘Sensitivity 

Based’ approach. Both approaches utilised a fitness function, which expressed how well a solution complied 

with the desired state. In this case, the fitness could be measured by the difference between actual activation 

levels and the activation levels estimated by a subject matter expert. The genetic algorithm performed 

significantly better than the sensitivity-based approach. 

3.5 Complicating aspects of ML in multi-agent systems 

A Multi-Agent Systems (MASs) falls into one of two categories: centralised or decentralized control based 

systems. Centralised control systems consist of agents that have a certain degree of autonomy but the overall 

system is controlled by a unifying strategy, approach or agent to achieve a specific goal.  However, despite 

the overall unifying strategy, an individual agent does not know what the other agents are doing, so the team 

strategy usually conflicts with the individual agent’s strategy at various points within the task.  This issue3 

has become the quintessential hurdle for the implementation of MASs in complex settings. Decentralised 

systems differ from their centralised counterparts by having agents with a higher degree of autonomy, but 

lack a pre-existing strategy that guides all of the agents. They typically have some form of communication 

system that allows the agents to develop the needed overall strategy while exploring their environment.  The 

challenge of developing intelligent CGFs, capable of air-to-air tactics, falls straight into the centralised 

category of MAS environments. As such, the individual agents must be trained together within the same 

environment. This however inflates the state space by multiples of the number of agents present in the 

environment. This is a consequence of each agent maintaining its own unique view of the environment, 

which is captured within its own state space. Nonetheless, there are valid arguments for pursuing the multi-

agent approach, particularly for modelling domain-related issues where different flight members may have 

different, possibly conflicting, goals and incomplete situation awareness.  

                                                      
3
 Otherwise known as the tragedy of the commons (Hardin, 1968). 
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4.0 ARCHITECTURE 

4.1 Simulation Environment 

The simulation environment that was used for CGFs in the Smart Bandits project is STAGE ™, a scenario 

generation and CGF software suite. As a basic scenario tool, STAGE provides us with a level of fidelity and 

abstraction which is well suited for the tactical air-to-air combat simulations that are currently considered. 

When a higher level of fidelity in platform, sensor or weapon models is required, the basic functionality 

provided by STAGE is extended. This ability to extend the basic functionality of the CGF environment is 

one of the reasons that STAGE was chosen as the main CGF software suite in Smart Bandits. 

4.1.1 Middleware (Mediator) 

Traditionally, Stimulus-Response (S-R) behaviour (see chapter 1) in agents can be realised in CGF software 

through the use of scripting and/or basic conditional statements. Combining these simple building blocks 

often provides a level of credibility to CGF behaviour, which may be adequate for many simulation training 

exercises. However, for more advanced problems and the associated agent behaviour, including learning 

behaviour, as described in sections 2 and 3, this method will not suffice. As argued in the previous sections, a 

wide array of techniques exists for developing CGF behaviour and controlling CGF in a simulation 

environment. A standard CGF platform does not cater for implementing these different techniques.  

In order to use STAGE as the CGF platform in Smart Bandits while delegating the control of the CGFs to 

external software (i.e. specific software, built using a programming language of choice), an interface was 

developed through which external software can receive observations from any CGF in STAGE and can 

command the CGF to perform actions in the simulation environment. This middleware layer (the so-called 

Mediator in figure 3) communicates in real-time with STAGE through a specific protocol (nCom, Presagis 

proprietary) and can send and receive the aforementioned observations and actions to and from different 

agents (possibly distributed over different computers). In order to communicate with the Mediator, external 

software uses a specific interface, defined in a library, which can easily be linked to the software, e.g. in Java 

or C++. 

 

Figure 3:  Architecture for including intelligent agents in a Commercial Off-The-Shelf CGF 
package (STAGE™ ), intelligent agents can use the C++ or Java interface to communicate with 

STAGE via the Mediator 

5.0 CONCLUSIONS & DISCUSSIONS 

A technique for cognitive modelling and various Machine Learning techniques have been presented in this 

paper. Unfortunately, there does not seem to be one single technique to resolve all emergent tactical 

problems of intelligent CGFs engaged in air-to-air missions.  
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Cognitive modelling is a powerful means to create motivation-based behaviour in CGFs. However to 

mitigate drawbacks of cognitive modelling, we advocate the additional use of Machine Learning techniques. 

Machine learning techniques are essential to reduce knowledge elicitation efforts for the development of 

CGFs acting in complex domains. This paper recommends combining different approaches into hybrid 

models. 

The goal of the principal architecture presented here is three-fold:  

• decoupling the intelligent CGF models from the tactical fighter simulation, 

• facilitating the process of linking models of human behaviour to the aforementioned simulation, 

• enabling the distribution of intelligent CGF models at different clients.  

Together, these three characteristics enable pursuing the hybrid method. 

Within the Smart Bandits project, behaviour and design of intelligent CGFs must be tailored to the training 

objectives of the tactical training on hand. In this paper we have not dealt explicitly with training 

requirements. However, implicit in this paper we have assumed that required CGF behaviour for tactical 

training of operational fighter pilots comprises such aspects as the ability to surprise the human opponent, 

seemingly random behaviour, i.e. not repetitive in its responses, and realistic from a weapon platform 

perspective. The intelligent CGFs that have been created so far will be validated against training 

requirements in the coming project phase (2012/2013).  Hence, the two main items for future work within 

the Smart Bandits project are: 

• the implementation of hybrid models, in which cognitive modelling and ML are combined and 

• tailoring the behaviour of intelligent CGFs to specific learning objectives or competencies. 
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